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Deviations from critical density in the generalised hard 
hexagon model 

Paul A Pearce and Rodney J Baxter 
Department of Theoretical Physics, Research School of Physical Sciences, The Australian 
National University, Canberra, ACT 260 I ,  Australia 

Received 23 December 1983 

Abstract. Ramanujan’s elliptic function identities and others are used to obtain infinite 
product forms for the deviations p - p, from the critical density p c  = l(1 - 5 - ” 2 )  in the four 
regimes of the generalised hard hexagon model. Product forms are also obtained for the 
singular part prlng of the density confirming the simple scaling forms recently conjectured 
by Huse. 

1. Introduction 

The generalised hard hexagon model is actually a special class of hard square lattice 
gas models with diagonal interactions L and M obtained by restricting the activity z 
to the values 

Z = ( I  -e-L)(l -e-M)/(eL+M -eL-eM)aO.  (1.1) 

This constraint defines a surface, in the three-dimensional thermodynamic ( z ,  L, M )  
space, on which the hard square models can be solved exactly (Baxter 1980, 1981, 
1982, Baxter and Pearce 1982, 1983). 

The two-dimensional surface (1.1) in fact consists of three disjoint sheets and the 
exact solution reveals a line of critical points on each sheet. On the first sheet ( L  a 0, 
M s 0), the line of critical points is located by the additional equation 

(1.2a) 

and separates a disordered fluid phase (regime I) from a triangular (3 x 1) ordered 
solid phase (regime 11). This line, which includes the critical point ( L +  0, M + -00, 

z = i( 1 1 + 5 f i ) )  of the pure hard hexagon model (L+ 0, M + -CO, z a 0 arbitrary), 
appears to be a line of three-state Potts-like critical points. The line of critical points 
on the second sheet ( L  2 0, M 3 0) is located by the equation 

(1.2b) 

and sepacates-a (first-order coexistence) surface of triple points (regime 111) from a 
square (42 x J2 )  ordered solid phase (regime IV). This line of critical points is actually 
a line of tricritical points at which the melting of the h x J 2  solid phase changes over 
from continuous to first-order (Huse 1982, Baxter and Pearce 1983). The third sheet 
( L  S 0, M 3 0) differs from the first sheet only in the interchange of L and M correspond- 
ing to rotating the lattice by r / 2 .  

2-1/2(1- z eL+M) = [i(l + J $ ) l - 5 / 2  

z - ’ / 2 (  1 - eL+M) = -[’ *(I + J?)I-’’~ 

0305-4470/84/102095 + 14$02.25 @ 1984 The Institute of Physics 2095 
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On the basis of the exact solution on the two-dimensional manifold (1.1), Huse 
(1983) has recently examined the scaling behaviour of the hard square lattice gas with 
diagonal interactions in the larger context of the full three-dimensional ( z ,  L, M )  space. 
This led Huse (1983) to propose simple scaling forms for the free energy, spontaneous 
order parameters and density functions. Unfortunately, unlike the other exact results, 
the expressions previously given for the density functions in regimes I-IV are not in 
a form suitable for analysing critical scaling behaviour. In this paper we rectify this 
situation. More specifically, in each of the four regimes, we obtain convenient infinite 
product forms for the deviations of the density p from its critical value. In addition, 
we use these to obtain the singular part psing of the density in product form, thereby 
confirming the scaling forms conjectured by Huse (1983). 

2. Definitions and results 

By now the interplay (Baxter 1981, Andrews 1981, Andrews et a1 1984) between the 
various density functions of hard hexagon type models and Rogers-Ramanujan iden- 
tities is well established. It is therefore useful from the outset to define the following 
list of functions: 

CO 

a x ) =  n (1 -x") (2.1 a )  
n = I  

a 

P(x) = Q(x)/ Q(x2) = n (1 - x2"-') 
n=1 

(2.16) 

?o 

R(x) = P(-x)Q(-x) = P'(-X)Q(XZ) = 1 +2 xnZ (2.1 c) 
n = I  

W 

H ( ~ )  = JJ [(I -x5n-3)(1 -X5n-2)1-1 
n = l  

m 

G , ( x ) = [ ~ ( ~ - J ~ ) ] - " ~  n [l +f(l  - h ) x n  +x2"]-' 
n = l  

H,(x) = [;(5 +&>1-1'2 fi [l +;(I +&xn + x 2 y  

= ( 2 s i n ( T )  c1(1-z2xn)(1-z3xn) 

n = l  

(2.1 e) 

where z = exp(2ri/5). These functions are all standard in the literature on Rogers- 
Ramanujan identities and will occur repeatedly throughout this paper. For later 
reference we observe that 

G(x)H(x) = QW)/  a x )  

G1(x)H,(x) = 5-'"Q(x)/ Q(x'). 

(2.1 h )  

(2.1 i) 
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Using these standard functions, the known results (equations (14.6.7)  of Baxter 
(1982)  and (4.31) of Baxter and Pearce (1983)) for the density in the four regimes of 
the generalised hard hexagon model can be summarised as follows: 

p1 = HI( t2/3)H1( - t ) P (  - t 5 / 3 ) /  P (  - t ' 5 1 3 )  ( 2 . 2 a )  

( 2 . 2 6 )  

( 2 . 2 c )  

( 2 . 2 d )  

( 2 . 2 e )  

Here t is defined by the restriction ( 1 . 1 )  and the relation 

z- ' l2(1 - z  eL+M)=  * [ H , ( t ) / G l ( t ) ] 5 / 2  (2 .3)  

where the plus sign is taken in regimes I ,  I1 and the negative sign in regimes 111, IV. 
The parameter t lies in the range - 1 < t < 1 and measures the deviation from the critical 
lines (1 .2)  which are the curves corresponding to t = 0; t is positive in regimes I ,  I11 
and negative in regimes 11, IV. The curves (2 .3)  of constant t fill the special surface 
(1 .  l ) ,  the densities ( 2 . 2 )  being constant along these curves. 

In all the above cases the critical (multicritical) density, obtained by setting t = 0, is 

&=;(I - 5 - 9 .  (2 .4)  

The results we prove in this paper can now be stated as follows: 

P I =  pc - ( t2/3/Js)( G( - f1/3)H( t Z ) P 2 ( - t 5 / 3 ) /  G( t 2 / 3 ) G ( - t ) P 2 ( - t ' ) )  ( 2 . 5 a )  

(2 .56)  

p l ~ =  pc + ( t 2 / 3 / ~ ) ( H 2 ( - f ) / G ( - t 1 / 3 ) G ( - f ) ) ( Q 2 ( - t 5 ) / Q 2 ( - t ' / 3 ) )  ( 2 . 5 ~ )  

pI - pI1 = - ( 2 t 2 / 3 / J j ) ( Q ( -  r)Q(r'O)/ ~ ( - t ~ / ~ ) ~ ( t ' ~ / ~ ) p ~ ( - t ~ ) )  ( 2 . 5 d )  

= pc - (t'/'//JT)(H( t ' / * )H(  t)Q( t l") /  R( t5 / ' ) )  

= D(-t""> = pc +(t"4/J5)(H(-f'/4)H(t)Q(t'/2)/R(-t5/4)) 
(2.5e,  f) 
(2.5g) 

P I V =  W t )  = P ~ - ( ~ / J S ) ( H ( ~ ) H ( ~ ~ ) Q ( ~ ~ ) / R ( ~ ~ ) )  

p;Zd - prv = D(t'/*) - D( t )  = -(t'/'/J3)(Q(t)Q(t5)/R(t'/4)R(t5)) 
(2.5 h )  

( 2 . 5 i )  

- plv = D(- ti'4) - D( t )  = ( t1'4/J5)( Q( t)Q( t5 ) /  R(-t5/*)R( 2 ' ) ) .  (2.5J) 

Equations ( 2 . 5 g )  and (2 .5h)  are not independent results; they follow from the functional 
form of D given in (2 .5f ) .  Similarly, (2 .5 j )  follows from (2 .5 i )  by replacing t1 /4 with 
- t ' /4*  
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We have already said that Huse (1983) has put forward scaling arguments for the 
behaviour of the singular part psing of the density in the various regimes. Precisely, 
Huse suggests that psing is of the form 

Psing = t 2 / 3 ~ I ( t >  ( 2 . 6 ~ )  

in regimes I ,  I1 and 

Psing = t ' / 4 ~ l l l ( t )  ~ i l r , i d t ~ / ~ )  ( 2 . 6 b )  

in regimes 111, I V ,  where each of the X and Y functions is analytic. 
One possible definition of p,ing is the difference between its value for t > 0 and the 

value obtained by analytically continuing from t < 0 around the singularity at t = 0. 
From (2 .5d,  i , j )  we immediately find the simple scaling forms 

( 2 . 7 ~ )  

(2.76, c )  

PI -PI1 = 5 Y / 3 2 / 3 Q ( - t )  Yl,Il(t5'3) 

- PI"=  5 - ' / 2 t 1 ' 4 Q ( t ) Y ~ y ~ * : ~ t ~ / 4 )  p ; f ) ; i d - P l v =  5 - ' / 2 f 1 / 4 Q ( f )  ys?;;;&5/4) 

where 

Y I , l d X )  = -2Q(X6)/ Q(-X)Q(X2)P2(-X3) ( 2 . 7 d )  

are in fact Taylor expandable functions about x = 0 with integer coefficients. These forms 
thus confirm (2.6) when psing is defined by analytic continuation. 

Although it is far from obvious for pll ,  each of the densities in (2 .2)  can be Taylor 
expanded about t = 0 in powers of either t"3 (regimes I ,  11) or t ' l 4  (regimes 111, IV). 
The singular part of such functions can be conveniently obtained by so expanding and 
subtracting off all the integer powers of t ,  that is by using the definition 

P = Psing + Panal  (2 .8)  
where the analytic part panal consists of all the integer powers of t. Suppose L ( x )  is 
Taylor expandable and given by, 

03 

L ( x )  = c I,X". 
n = O  

( 2 . 9 0 )  

Then it will be convenient to define other derived functions by the Taylor expansions 

( 2 . 9 b )  

( 2 . 9 ~ )  
J = o  n = O  
j #  k 

where k and p are integers with 0 s k s p - 1.  

(2.56, d, i, j ,  k) respectively that 
Using the alternative definition (2.8) of psing and (2 .9)  we now find from 

(2 .  loa) 

(2.1 Ob) 

(PJring= [P l ( t l ' 3 ) ]o ,3  = 5 - ' / 2 1 2 / 3 Q ( - t ) Y l ( t 5 / 3 )  

(Pl1)sing = b11(t1")10,3 = 5-1'2t2'3 Q(- t >  y11(ts'3> 
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are once again all Taylor expandable functions with integer coefficients. Clearly, the 
results (2.7) and (2.10) firmly establish the simple scaling forms (2.6) conjectured by 
Huse (1983) with 

3. The identities 

It remains to prove the product forms (2.5). To do this it suffices to prove a series of 
six identities as follows: 

P(x5) 1 G ( x ) H ( x 6 )  P2(x5)  H'(x2)Hdx3)*=5-i ( ;+'' G(X2)G(X3) p2(x15) 

G ( x ) H ( x 6 )  P2(x5)  H(x l0)  Q(x3)  P(x5)  H(xI5)  
G(x2)G(x3)  P2(x1')-  G ( x i S )  Q(x")  ~ ( X I ' )  G ( x  ) 

(3.1 a )  

+x,, (3.1 b )  ----- 

H 1 ( x  "3)HI (x3) Q ( X 5 / 3 ) Q ( X 1 5 )  

Q(x')  

(3 .1~)  - + x ' / 3  Q ( X 3 ) Q ( X 1 5 )  - x 2  

Q'(x') 

(3.ld) ~- Q(x3)Q(x3") 

- 

G(x)H(x6)  P2(x5)  H2(x3)  Q'(x'') 
G(x2 )  G ( x 3 )  P2(x I ') + G ( x )  G(x3)  Q2(x5)  

D ( x )  = 

- 2  
Q(x5)  Q(x  ")P2( x I ') 

(3. I f  1 D(x)-D(x4)=-  =-- x Q(x4)Q(x20> 
2J5 R(x20) R(x3 )  J$ R ( x 5 ) ~ ( x 2 0 ) *  '-( R ( X 4 )  R ( x ) )  

The first four identities, with x = - I " ~ ,  pertain to the regime I ,  I1 results ( 2 . 5 ~ 4 ) .  
The last two compound identities, with x = +t1 '4  or t ,  are all that is needed to establish 
the regime 111, IV results (2.5e-j). 

The six identities (3.1) were first obtained from computer calculations. In the case 
of (3.1 u, c, e), a Fortran program was used to evaluate the first 95 or so coefficients in 
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a Taylor expansion of the densities (2.2) in the form 

m 

p(x)/p,= 1 + c (a:z+aZ,z2+a3,z3+a4,z4)xn 
n = l  

( 3 . 2 ~ )  

where z=exp(2ri /5) ,  x =  t" ' ,  f t " 4  or t as appropriate and a!,, a;, a:, at with 
n = 1,2, . . . ,95 are stored integers. All one needs is subroutines for multiplying and 
dividing by (1 f zmxn).  Sure enough, for all the coefficients evaluated, it was found that 

(3.26) 4 2  a!, = a ,  = a,-a3, = o  

which strongly suggests that p(x) is of the form 

m 
p(x) = $( 1 - S - ' " )  - 5-l" C bnx" 

n = l  
(3 .2~)  

where the b, are all integers and b, = a; for n = 1,2 , .  . . , 100. Next, a subroutine was 
used to convert the series into product form 

n = l  n = I  
(3.2d) 

evaluating the first 95 integer exponents co, c I ,  . . . , cg4. In every case, obvious recurrence 
patterns in these exponents, repeated over many periods, enabled us to identify the 
product form (3.2d) as well defined products of the elliptic functions (2.1 a-e).  

The identities (3.1 d , f i  were similarly obtained by using (3 .2~)  to evaluate pr - pII 
and pIII -pIv  (fluid or solid) in series form and then using (3.2d) to convert to the 
product form. The remaining identity (3.lb) was more difficult to obtain. First we 
obtained the series for the singular part of pI numerically, converted to product form 
and found, in agreement with (2.6a), that to order xg5 

[pI(x)]0,3 = -~-'/ 'x'Q(x')A(x~) (3.3a) 

where the function A has a Taylor expansion with integer coefficients but no simple 
product form. Using ( 2 . 5 ~ )  this leads to the functional decomposition 

( G( x)H( x6)/ G(x') G(x3))( P2( xs)/ P2( x Is)) = Q( x3)A( x5) + xB( x') (3.3b) 

where B is also a Taylor expandable function with integer coefficients. The decomposi- 
tion (3.3b), however, is not unique. Indeed, by redistributing the terms in the series 
for the right-hand side, it was found possible, this time working to order xIgo, to arrange 
that 

(3.3c) 

where now the Taylor expandable functions Y and C are determined uniquely and, 
moreover, are found numerically to have a simple product form leading to the identity 
(3.1b). Although the singular part of pll is also of the form (3.3a), we found no 
simplifying feature analogous to (3.3~).  

Having used machine calculations to guess the form of the six identities (3.1), it 
remains to prove them analytically. This we do in the remainder of this section, proving 
the six identities in the order listed in (3.1). 

(G(x)H(x6)/ G ( X ' ) G ( X ' ) ) ( P ~ ( X ~ ) / P ~ ( X ~ ~ ) )  = Q(x3) Y(x5) + xC(x15) 
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3.1. Proof o f j r s t  identity 

To prove the identity (3 . la)  we will actually prove the pair of identities 

( 3 . 4 ~ )  

(3.4b) P(x5)  1 G ( x ) H ( x 6 )  P 2 ( x s )  G1(x2)G1(x3)p(X'5)-5 - +- 1 5 (  - + x  
G ( x 2 ) G ( x 3 )  P2(x") 

From (2.1) these identities are equivalent under the interchange of 4'5 and -h. Adding 
and subtracting the identities (3.4) we obtain 

( 3 . 5 ~ )  G I ( x 2 ) G I ( x 3 )  + H I ( x 2 ) H l ( x 3 )  = P ( x " ) /  P ( x ' )  

p ( x ' 5 >  + 2 x 2  G ( x ) H ( x 6 )  P(x ' )  
G ( x 2 ) G ( x 3 )  P ( x i 5 ) '  v'?[G,(x')G,(x~) - H l ( x 2 ) H 1 ( x 3 ) ]  = - 

P ( X S )  

Using (3.5a), this last identity can be written as 

2 G ( x ) H ( x 6 )  m5> 
$(&- 1 ) G I ( x 2 ) G , ( x 3 ) - ~ ( h +  l ) H I ( x 2 ) H I ( x 3 )  = x G ( x 2 ) G ( x 3 )  P(x15)' 

(3.5b) 

(3.5c) 

At this stage we need to introduce some more elliptic functions in order to convert 
(3.5) into series form. For /q1< 1, O <  lwl<co we therefore define 

X a 
f ( w ,  q ) =  n ( 1 - q " - 1 w ) ( l - q " w - ' ) ( l - q " ) =  2 ( - l )nqn(n-1) '2  w n  = f ( q w - I ,  q )  (3.6) 

n = 1  n=--oc 

13 a2 

e,(u, q ) = 2  sin U n (1 - 2 q "  cos 2 u  +q2")(I  - q " ) =  -i ( - l ) " q n ( n + 1 ) ' 2  e ( 2 n + l ) u i .  

n = l  "=- -CO 

(3.7) 

These functions are related by 

e,@, q )  = i e-" f(e2iu, 4 ) .  (3.8) 

The definition (3.7) of the elliptic theta function is non-standard and differs from 
Baxter (1982) by a factor of 2. From (2 .1)  and (3.7) we see immediately that 

(3.9a) 

(3.9b) 

Using (3.9), the identities (3.5~1, c )  can now be written as 

2 
5 - 1  C ~ - ~ ~ e , ( 2 ~ p / 5 ,  ~ ' ) e , ( 2 ~ p / 5 ,  x') = x 2 f ( - - x ,  x 5 ) f ( x 3 ,  x30) (3.106) 

p = - 2  

where again z = exp(2ai/5) and we have used the simple facts that 

z+z4=2coS(2 .rr /5)=i (~ '5-  1) 
- 

z2  + z3  = 2 C O S ( ~ T / ~ )  = -f(h + 1 )  (3.1 1 a, b )  

81(0,4) = 0 O,(-u, 4 )  = -&(U, 4 )  (3.12) 
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as well as the straightforward identities 

2P(x3)/  P ( x )  =f(- 1, x ) f ( x 3 ,  x6>/ Q(x’)Q(x3> (3.13) 

(3.14) 

The identities (3.10) can now be proved by manipulating the double series rep- 

( G ( x ) H ( x 6 ) / G ( x 2 ) G ( x 3 ) )  ( P ( x S ) / P ( x l 5 ) ) =  f ( - x ,  x 5 ) f ( x 3 ,  x3’)/ Q(x”)Q(x ’~ ) .  

resentations as follows: 

2 c €  - - 5-1 C C ( _ ~ ) r + s + l X r ( r + 1 ) + 3 s ( s + l ) / 2  z Z p ( r + s + n + l )  

p = - 2  r , s = - c €  

X 

= ( - 1 ) k + n X ( 5 k - s - n - : ) 2 + 3 ( s + ~ ) 2 / 2 - ~  

k , s = - x  

= 2 (- 1 )  k + n X S  [ ( I -  I ) / 2  +(2n - 5 ) r  + I5 k( k -  I )+( IS-6n)k t n ( n  + I )  

k , t = - a  

, X5)f(X15-6n, x30). 
n ( n + I )f( - 2n + 5  = (-1)“x (3.15)  

Here we have used the series representations (3.7) of the theta functions and  restricted 
the sum on r to the values r = 5 k - s - n - 1 because of the relation 

m = 0 (mod 5 ) ,  
m # 0 (mod 5) .  p = - 2  

(3.16) 

Next, we factored the double series by transforming from s to t = s - 2k .  The last step 
in (3.15) then follows from (3.6). Finally, setting n = 0, -2 in (3 .15)  yields (3.10a, b )  
respectively. 

Before proceeding, it should be pointed out that the identity ( 3 . 5 ~ )  is actually the 
conjugate modulus form (see the appendix) of the standard identity 

G ( x 2 ) G ( x 3 )  + x H ( x 2 ) H ( x 3 )  = P ( x 3 ) / P ( x )  (3.17) 

which is identity (7 )  on the list of Ramanujan’s 40 ‘sums of products’ identities given 
by Birch (1975). From the conjugate modulus form of (3.56) we see that we have 
proved the complementary identity 

i(J7- 1)G(x2)G(x3) -$ (J?+ I ) x H ( x 2 ) H ( x 3 )  = ~ I ( X ) G I ( X 6 >  p(x> 
GI (x’) GI (x’) P(x3)’ 

3.2. Proof of second identity 

After rearranging, the identity (3.1 b )  can be written as 

= Q( x3) Q( x I Q ( x  I o )  H( x O) 

+XQ(X’~)Q(X‘~)P(X~~)Q(X~~) /  P(x5)G(x I5 ) .  

(3.18) 

(3.19) 
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Q(x> = f ( x ,  x3> 

Q(x3>P(x3)/ P ( x )  = f ( - x ,  x3> 

f ( -x ,  x5)f(x3, X3O)f(X30, x75) =f(x3, x15)f(x6, x15)f(x'O, x50) 

this becomes 

+ X f ( X l 0 ,  X3O) f ( -X5 ,  x15)f(x i5,  x75). 

(3.21) 

(3.22) 

(3.23) 

To prove the identity (3.23) we first prove the two auxiliary identities 

f ( -x ,  x5)f(x3, X3O) = f (x I0 ,  X5O)f(X3O, x 7 7  +Xf (X2O,  X5O)f(X15, x75) 

- X 3 f ( X l 0 ,  X5O) f (X '5 ,  x75) (3.24) 

(3.25) f ( x ,  x5)f(x2, x5) =f2(x10, x27  - xf(x5, x25)f(x10, x25) - X y ( x 5 ,  x25). 

The double series for the left-hand side (LHS)  of (3.24) is 

1 ( ~ ~ ) s X 5 r ( r - I ) / 2 + r - 1 5 s ( s - l ) + 3 . ~  

1,s = -cs 

2 %  
- - (- 1 ) s X S ( 2 s  +5k + ~ ) ~ / 2 - $ ( 2 s  +5k +p)+ l  5s2- 1 2 s  

p=-2 ks=-X 

= i 2 (~~)k+~X25r(r-1)~10(p+l)r+75k(k-1)/2+15(p+3)k+(5p2-3p)/2 

p=-2  f q r = - c c  

- - x ( 5 ~ 2 - 3 ~ ) / 2 f ( x 1 0 ~ f ~ 0  xsO)f(x15P+45, x73. (3.26) 

In the first step we have held s fixed and summed separately over the values 
r = 2s +5k + p  for p = -2, -1, 0, 1,2. Next we transformed from s to t = s + k  and 
lastly we factored the double series using (3.6). Writing out the five terms in the last 
sum and using the simple results 

f ( 1 , 4 ) = 0  f ( w - l ,  4 )  =f(w 4 )  = - W - l f ( w ,  4 )  (3.27) 

p=-2  

we obtain the RHS of (3.24). Similarly, the double series for the LHS of (3.25) is 

f ( - 1 )r + s X 5 r ( r -  I )/z + r + 5 s ( s  - 1 ) / I  + 2 s  

r ,s  = -32 

= 'f 2 (-l)k+s+pX5(5k-2s+p)2/2-3(5k-2s+p)/2+5s2/2-3s/2 

p=-2 k,s=-cc 

= i 'f (~~)k+r+pX25r(r-I)/2+5(3-2p)f+25k(k-1)/2+5(2+p)k+(5p2-3p)~2 

p=-2 k , r = - E  

L 

(3.28) 

where this time t = s -2k. Wrting out this last sum using (3.27) gives the RHS of (3.25). 

- - c ( - 1 ) P x ' 5 P 2 -  3 ~ ) / 2 f ( ~ 1 5 - I O P ,  x 2 5 ) f ( x ~ O + S P ,  x 2 5 )  

p=-2 
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We now return to the identity (3.23). Putting (3.24) and (3.25), with x replaced by 

A ( x 5 )  + x B ( x 5 )  + x 3 C ( x 5 ) .  (3.29) 

Equating the corresponding functions of x 5  on each side, and replacing x 5  with x, we 
are left with the single identity 

f ( x4 ,  xlO)f(x6, XI’) = f ( -x ,  x3)f(x2, x6) - xf(x2, X l 0 ) f ( X 3 ,  X I 5 )  (3.30) 

the other two being satisfied trivially. But using (3.20), (3 .21)  and (3.22) this last identity 
is just the Ramanujan identity (3.17) stated by Birch (1975). 

x’, into (3.23) we see that both sides of this equation are of the form 

3.3. Proof of third identity 

Replacing x in ( 3 . 1 ~ )  with x3 and then JJ with -4’2 we obtain the pair of identities 

(3 .3 1 a )  

(3.3 1 b )  

Adding and  subtracting these we find 

H2(x9) Q(X”) 
~ ’ ~ [ G l ( x ) G I ( x ’ ) -  H l ( x ) H I ( x ’ ) ]  = 

G( x’) G( x’) Q ( x  ’)’ 
(3.32b) 

Using (3.32a), this last identity becomes 

( 3 . 3 2 ~ )  

Using (3.9), (3.1 1)  and  (3.12) the identities (3.3~2, c )  can be written as 
2 

5 - I  

5 - 1  C ~ ) e , ( 2 ~ p / 5 ,  x’) 

el(2.rrp/5, x )e1 (2 rp /5 ,  x’) = 2 ~ ~ ( ~ ~ ~ )  
p=-2  

2 

p=-2  

(3.33a) 

= xQ(x’)Q(x”) - X ~ Q ~ ( X ” S > H * ( X ’ ) /  G(x3 )G(x9 ) .  (3 .33  b )  

To prove these we now manipulate the double series representations as follows: 

2 x  - 5-1 C C ( ~ ~ ) r + ~ X r ( r r l ) / 2 + 9 r ( s + l ) / 2  2p(  z - -  
p=-2  r , s = - x  
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1) 

- - C (_l)k-nX[5(5k’-Zks+2s’)-5(2n+l)k+2(n+5)c+n(n+l)]/2 

k , s = - x  

X [ 4 S m ( m -  l)+6( I O - 5 / - n J m - ( S / + n ) ( S i + n  + 1 ) ] / 2  

I 

9 , x45). (3.34) = (- 1 ) 5 / + n  ( 5 1 + n ) ( 5 1 - n  + I  ) / 2 f ( X 3 0 / - 6 n  +30 x 4 5 ) f ( x 3 0 -  151-3n 
X 

/ = - I  

Here we have used the definition (3.7) and restricted the sum on r to the values 
r = 5 k -  s - n - 1 using (3.16). Next we have set k = 3m - s  - 1 = m - t -  1 with t = s -2m 
and summed separately over 1 = - 1, 0, 1 .  Finally, for each 1, the double series factors 
into a product of f-functions given by (3.6). 

Setting n = O  in (3.34) and using (3.27) and (3.21) we obtain (3 .33~) .  This proves 
( 3 . 3 2 ~ )  which is the conjugate modulus form (appendix) of the Ramanujan identity 

G(x)G(x’ )  + x ’ H ( x ) H ( x ~ )  = 02(x3)/ Q ( x ) Q ( x ~ )  (3.35) 

which is identity (6) on the list given by Birch (1975). Setting n = - 2 ,  1 = 0 in (3.34) 
we obtain, using (3.20), the term 

Xf(Xl8, X47f(XY,  x 4 3  = xQ(x’)Q(x”)  (3.36) 

as in (3.336). Evaluating the remaining terms (n = -2, 1 = -1 ,  1)  in (3.34), using (3.27), 
and comparing with (3.336), we find that it remains to show 

(3.37) f ( ~ ’ ,  x ” ) f ( x 4 ,  X ’ ~ > - ~ ( X ,  x ’ ~ ) ~ ( x * ,  x ’ ~ )  = ~ Q ’ ( X ’ ~ ) H ~ ( X ~ ) / G ( X ) G ( X ~ )  

where we have replaced x 7  with x. But using the simple identity 

Q ’ ( ~ ’ ’ ) H ’ ( X ~ ) / G ( X ) G ( ~ ~ ) = ~ ( X ,  x15)f (x4 ,  x 1 ’ ) f ( x 3 ,  x 1 5 ) / f ( x 6 ,  x ” )  

we see that (3.37) is just a special case ( w  = x, q = x ’ )  of the general identity 

(3.38) 

f(w‘, q31f(4w, 931f(4w-1. s3) -  M w ,  q71f(q2”2, q3)f(qw-i,  q3)  

=f(w, q3) f (9w ,  431f (92w-2 ,  q3).  (3.39) 

To prove (3.39) we fix q and let F ( w ) ,  with U’ complex, be the ratio of the L H S  over 
the RHS. We now observe that F(  w )  = F(q’w) is analytic throughout a period annulus 
and hence is constant by Liouville’s theorem. Setting w = - 1 verifies that the constant 
is unity. This completes the proof of (3.33) and hence establishes (3.3 1). 

3.4. Proof of fourth identity 

To prove the identity (3.ld) we begin by observing the following straightforward 
identities: 

( H ( x 3 ) /  G ( x ) ) (  Q 2 ( x  I ’)/ Q’( x 5 ) )  = f ( x ,  x I ’ ) f ( x  I ,  x I ’)/f2( x 5 ,  x 1 5 )  

( G ( x ) H ( x 6 ) /  G ( x 2 ) H ( x 3 ) ) (  P 2 ( x 5 ) /  P 2 ( x ” ) )  

(3 .404 

= f( -x ,  x ’If( - x  I 1, x 15)/f*(X5, x 15) 

H ( x 3 ) /  G ( x 3 )  = f ( x 3 ,  x I 5 ) / f ( x 6 ,  x ” )  

(3.406) 

(3 .40~)  
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Q(X3)Q(X3O) - f(-1, x'5)f(x3, X ' S ) f ( X 6 ,  X I S )  

Q(X5)Q(XI0)P2(XlS) - f(-x5, X l S ) f 2 ( X S ,  X I 5 )  ' 
2 (3.40d) 

Putting these in (3 . ld)  we obtain the identity 

f ' ( - X 5 ,  X ' S ) f ( X ,  X l 5 ) f ( X 1 ' ,  X I S )  + f Z ( X S ,  X l S ) f ( - X ,  X l S ) f ( - X " ,  x " )  

=f(-l ,  Xl5)f(-X'O, x's)f2(x6, X I S ) .  (3.41) 

But this is just a special case ( a  = b = -xs ,  c = x, q = X I ' )  of the general identity 

f ( a  If( blf(clf(abc) +f( - a If( - blf( - c)f(- abc) = f( - 1 If(- ab)f(  - bclf( - ca) 

where a, b, c are complex and f ( w )  = f ( w ,  4). 
The identity (3.42) can be proved analogously to (3.39). Let F ( a )  be the ratio of 

the LHS of (3.42) over the RHS. Then F ( a ) =  F ( q a )  is analytic throughout a period 
annulus and  hence is constant by Liouville's theorem. Setting a = 1 verifies that the 
constant is unity. This proves (3.41) and hence (3.ld).  

(3.42) 

3.5. Proof ofjfrh identity 

The second and third identities on the list of 40 Ramanujan identities given by Birch 
(1975) are 

G(x)G(x4)  t x H ( x ) H ( x 4 )  = P'( -X)  = R ( x ) /  Q(x') (3.43a) 

(3.436) G(x)G(x4)  - x H ( x ) H ( x 4 )  = R(x ' ) /  Q(x'). 

In conjugate modulus form (appendix) these become 

G,(x )GI (x4)  +H, (x )HI (x~)=  P2(-xS)  = R(xS) /Q(x l0 )  (3.44a) 

(3.44b) GI(x)G,(x4)  - H,(x)H1(x4) = ~ - ' " R ( X ) /  Q(Xio). 

From (3.43) we find that 

x H ( x ) H ( x 4 )  = f [ R ( x )  - R(xS)]/Q(x'). (3.45) 

Similarly, from (3.44) we find that 

H l ( x ) H , ( x 4 ) = ~ [ R ( x 5 ) -  ~ - " 'R(x ) ] /Q(x 'O) .  

It follows that 

(3.46) 

which is (3.1 e).  

3.6. Proof of sixth identity 

From (3.47) we see immediately that 

(3.48) 
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which is the first part of (3.1f). Also, from the two identities (3.43), one can establish 
that 

R ( X) R ( x 'O) - R ( x4) R ( x 5 ,  = 2xQ( x') Q( x8) G (  x4) H( x4)[ G (  x ' 6 ,  H( X) - x3 G (  X) H( x I ')I. 
(3.49) 

But now identity (5) on the list of Birch (1975) is 

G(x '~ )H(x ) -x~G(x )H(x '~ )=  P(-x ' )=  Q'(X')/Q(X')Q(X*). (3.50) 

Putting this in (3.49) and using (2.lh) we obtain 

R(x)R(x") - R(x")R(x') = ~xQ(x~)Q(x* ' ) .  (3.51) 

Finally, combining (3.51) and (3.48), we see that 

D(x)  - D(x4) = - ( x / J S )  (Q(x4)Q(x'o)/R(X5)R(X20)). (3.52) 

This is the second part of (3.lf) and completes the proof of the six identities (3.1). 
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Appendix. Conjugate modulus transformations 

All the identities in this paper can be written in two equivalent forms. These forms 
are related by the following conjugate modulus transformations: 
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